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ABSTRACT

The Calderén constant 2(X) is a numerical invariant of finite-dimensional
Banach couple X = (X, X1) measuring its interpolation property with
respect to linear operators acting in X. In the paper we prove the duality
relation =(X) & =(X*) and calculate the asymptotic behavior of (X) as

dim X — oo for a few “classical” Banach couples.

1. Introduction

The aim of the paper is to study properties of a new invariant of a finite-
dimensional Banach couple X = (Xp, X;). For some reasons (see (1.3) below) it
is named in the sequel the Calderén constant of X and is denoted by =(X).
The origin of the notion and its applications lay in interpolation space theory but
we will see that there are fruitful connections between this field of investigations
and the local theory of Banach and metric spaces.

To introduce the basic concept consider the “doubled” Minkowski compact
M., consisting of all n-dimensional Banach couples. An element X of M,, is
regarded as n-dimensional space X (over R) equipped with two norms || - |;, so
that X; = (X, |- ]l:),i=0,1.
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Let x,y be elements of X. We say that y is K-majorized by z in X (written
y < zmod X or simply y < x when no confusion can arise) if

(1.1) K(t,y; X) <K(t,2:X) (t>0).
See [BL] and [BK] for the definition of K-functional and other concepts and

results of interpolation space theory; see also Section 2 below.

Definition 1.1: The Calderdén constant of X is defined to be

®(X) := supinf{||T|lx; y = Tz}
y<z T

where ||T||5 stands for the norm of linear operator T: X — X in X, i.e.
1Tl := max | T]lx,—x.-

The following natural questions related to the definition will be discussed in
this paper:

(a) What is the attainable upper bound of 2(X) on M,?

It follows from Theorem 3.1 below that this quantity is equivalent to n as
n — 00.

(b) What is the relation between 2(X) and 2(X "), where X := (X, X}) is
the dual couple?

Theorem 4.1 states that

Ak

2(X) ~2(X)

with constants independent of dim X.

(c) What is the asymptotic behavior of @(X) for the “classical” Banach
couples? '
The most important classical couple is (€3, (wo), €7, (w1)) where

n 1/p )
“x”e;(w) = {Z lxi/wilp} (z e R™).
i=1
But it was firstly proved by Calderén [C] that

(1.3) =l 07) =1
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and then the efforts of many mathematicians resulted in the Sparr theorem [Sp]
which leads to the inequality

(1.4 (€5, (wo), €5, (wr)) < 2.

It is worth pointing out that, by preceding results of Semenov and Sedaev [SS]

and also of Sedaev alone [Se],
(1.5) & (€5 (wo), £y (w1)) < 2'7V/7.

Another important classical couple is the Lipschitz couple (£o(S),Lip(S))
where (S, d) is a finite metric space and

o (@) = f)]
1 fllLipes) = il:é}; —admn

Factorizing by constants one can consider this couple as an element of Moy
with n = card S.

In Section 5 we will show that the asymptotic behavior of (X) for Lipschitz
couples is nontrivial and strongly connected with the metric properties of S. So,

in the case of the metric subspace

of R we prove (Theorem 5.1) that
® (loo (D), Lip(Ay)) = logn  (n — o0).

We single out two corollaries of this result only.

Let S = T, be the dyadic tree of n = 2™ — 1 vertices with the metric induced
by the tree structure (the distance of two adjacent vertices equals 1). Then we
state (see Theorem 6.2) that

& ({oo(T), Lip(Ty)) = loglogn (n — o).

Now let W: := (£r,v3) be the discrete analog of the Sobolev couple

(Lp(0,1),W2(0,1)), where

n—1 1/p
||5U|lv; = {lxllp + Z [The1 ~ 17k|p} (z € R").

k=1
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Observing that Lip(4A,) = v up to factorization by constants we obtain by

duality
®(W)~logn (n— o).

It is interesting to find the asymptotic of ae(W;) for 1 < p < o0. Cwikel’s result

[Cw] suggests the following conjecture:
=(W}) = (logm)/>#1 (n — c0),

where 1 < p < 00, but now we can only prove a weaker result.
Finally, in Section 6 it will be proved that

® (£oo (5), Lip(5)) < 4log(#5)

for an arbitrary metric subspace of R.

QUESTION: Does a similar inequality hold for
(a) finite-pointed metric subspaces of R%?
(b) finite-pointed metric spaces?

Some applications of the formulated results to the so-called “main problem” of
the interpolation space theory are discussed in Section 7. The relevant definitions
and results of this theory will be described in Section 2.

2. C-couples

Applications of the formulated results will be concerned with interpolation
properties of Sobolev couples. For the convenience of the reader we present here
the relevant material from the interpolation space theory. For details omitted we
refer the reader to [BK] or [BL].

A pair X = (Xo, X1) of Banach spaces is said to be a Banach couple if both
X; are continuously imbedded into a Hausdorff topological vector space.

A linear operator T: Xo + X1 — Yy + Y is said to map from X into Y if

(X)) Y, (i=0,1)

and the norm
1Tl = max (T x, 1 x.-v.}

is finite.
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The notion of X-majorization and Calderén constant #(X) introduced in
Definition 1.1 for finite-dimensional couples can be readily extended to the
general case. The norm ||T||x of this definition is clearly to be replaced by
(T|l%_5- Recall that the K-functional of X is defined by

K(t,m; X) = inf_;_xl {“rOHXa + t“$1“X1} (t > 0)

=g
where z € Xp + X;.

Definition 2.1: X is called a C-couple if its Calderén constant is finite.

The next characterization of the set of all interpolation spaces of X is a direct
consequence of the definitions. For its formulation recall that a Banach space X

is called an intermediate space of X if
XonXiCcXCXo+ X,

If in addition
IT x| x—x < Tl%_%

for every bounded linear operator T: X — X, then X is said to be an (exact)
interpolation space of X.

Finally, the norm of X is called K.-monotone with respect to X if the
following property holds:

y<zmod X = |lyllx < cl|z|x-

PrOPOSITION 2.2:
(a) If the norm of X is Ki-monotone with respect to X, then it is an exact
interpolation space of X.
(b) Conversely, if X is an exact interpolation space of X, then its norm
possesses K -property where ¢ = z(X).

Of course, the second statement is informative for C-couples only.

Calderén [C] was the first to characterize the set Int(L;, Loo) of interpola-
tion spaces of (L1, Ly ) by the K-monotone property. Another description was
proposed independently by Mitiagin {M]. Calderén’s proof is based on the
result equivalent to

®(Ly, Loo) = 1.
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Since then many other C-couples have been discovered; see a brief discussion
below, and papers [CN] and [Ka] containing relevant references. For our goal the

following constructive description of Int(X) proposed by Brudnyi and Kruglyak
(see, e.g., [BK], Theorem 4.4.5) is of importance.

THEOREM 2.3: Let X be a C-couple and let X be an exact interpolation space of
X. Then there is an absolute constant ¢ > 0 and a Banach lattice ¢ of measurable
functions on (Ry., dt/t) such that

2l g, 3y < lzllx < (X))l @)
forallz € X.

Recall that the interpolation functor K4 of the real method is defined by

finiteness of the norm

I2llge, ) = 1K (25 X) -
Remark 2.4: The book [BK] contains a qualitative version of the theorem.
But on checking the constants that appear in the proof we obtain the desired
inequalities with ¢ < 23.

Thus, in the case of C-couple X the set Int(X) coincides with the set {K4(X)}
of all K-spaces of X. Unfortunately, the problem of determining whether a given
X is a C-couple, is very difficult. In accordance with our goal we present here a
few results in this direction.

Let Ly(w,du) be a weighted L,-space with the norm

=1 )g"du}””.

We denote this space by L,(w) if (Q,dp) = (Ry,dt/t) and we denote L,(w) by
Ly if w(t) :=t" (t € R+)—where 0 Er <1 B

Within this notation X, and X, stand for K4(X) with ¢ = L,(w) and Ly,
respectively.

THEOREM 2.5 ([Sp)): (Lyp,(wo), Ly, (w1)) is a C-couple.

The result concluded a considerable amount of subsequent effort devoted to
generalization of Calderén’s result on weighted L,-couples; see, e.g., [Ka] for the
relevant references. The theorem was independently but a little later proved by
Cwikel who applied it in order to prove the following striking result.
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THEOREM 2.6 ([CW]): (Xropos Xrip:) iS @ C-couple for any X if 0 < r,r1 < 1.

To formulate the generalization of this theorem we associate with the couple
(Lpo (wo), Lp, (w1)) the pair {wo,w;} of concave functions defined by

1
(2.2) wi(s) = | min(1,¢/8)llz,, ws) cek)

where ¢ =0, 1.
The pair {wp,w;} of concave positive functions of R, is said to be factorable
if

(2.9) wim G (i=0,1)

for some concave functions ¢;: Ry — R, and numbers r; € (0,1) (i =0,1).
Throughout the paper the equivalence of two functions f ~ g means that

clf<g<ef

for some ¢ > 0. The infimum of such ¢ is said to be the constant of the equivalence.

Within the notion we may formulate

THEOREM 2.7:
(a) If {wo, w1} is factorable then (X g pys Xw,,py ) is & C-couple for any X.
(b) The factorization condition is also necessary for (X we.po> Xw;,p,) t0 be a
C-couple in case X = (loo(R; ), Lip(Ry )).

The result has been proved in [BS].
Now let A(w) be the Lipschitz space defined by

o ) = f=)]
”f”A(u) = iup W

#y W
where w: R, — R, is concave. We regard A(w) as a Banach space by factor-
ization by constants. In particular, (A(wo), A(w1)) with wi(t) := t* (i = 0,1)
coincides with the couple of the formulation of Theorem 2.7(b). Basing ourselves

on the explicit form of K-functional for this couple, see [P], we deduce that

Ky (loo(Ry), Lip(Ry)) = Aw) (¢ := Loo(w))

isometrically.
This leads to
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COROLLARY 2.8: (A(wp), A(w1)) is a C-couple iff (wo,ws) Is factorable.

The proof of Theorem 2.6(b) is based on the approach presented and may be
treated as one of the applications of the method. In Section 7 we shall demon-
strate some other applications restricting to the simplest case of Lipschitz couples
of p-integrable functions (Lip, (R4 ), Ly(Ry)) for p=1,00. In case 1 < p < oo,
i.e., when Lip,(Ry) = WI}(R+), the couple for the first time was studied by
Cwikel [Cw], who proved that it was not a C-couple and, what is more, estab-
lished a qualitative version of this statement. In case p = oo the same statement
was proved by Bychkova [B] and by Cwikel and Mastylo [CM] in two different
ways (see also Corollary 2.8 for the third proof of the result). But we shall also
prove that the couple (Lip(Ry), Loo(Ry)) is as bad as possible with respect to
the C-property; see Theorem 7.1. The same fact is correct in case p = 1, but
its proof requires a modification of the method presented. To avoid technical
details we shall prove the weaker but also new result: (Lip;(Ry ), L1(R;)) is not
a C-couple, see Theorem 7.3.

3. Upper bound for n-dimensional Calderén constants

Within the notation of Section 1 let us denote

&, := max{2(X); X € M, }.

THEOREM 3.1: n/2v2 < &, < V2n.

Proof (The upper estimate): We begin with the following general statement.
Let X be a retract of Y, i.e. there are bounded linear operators I: X — Y
and P: Y — X such that

(3.1) PI =idx.

Lemya 3.2: 2(X) < (1] - |1PIf) =(Y).

Proof: Suppose that z,y € Xy + X satisfy

(3.2) K(t,y; X) < K(t,5; X) (t>0).
Then, it follows from (3.1) that

K(t,Iy;Y) < [[TIK (¢, % X) < |[TIK (¢, Plz, X) < [IPIK(, 12:Y).



Vol. 101, 1997 CALDERON CONSTANTS 297

From this and from Definition 1.1 of &(Y) it follows that Iy = T(Iz) for a
bounded linear operator T :=Y — Y such that

ITI < NI 1PN + e)e(Y) (e > 0).

Thus, using (2.1) we conclude that

y=Tz:=(PTI)z

and
1< (M1 1P + €)z(P).

This gives the stated inequality. |

We are now in a position to show that for any n-dimensional couple X there

exists a couple H of Hilbert spaces of the same dimension such that
(3.3) 2(X) < nz(H).
Indeed, according to the John theorem, there exist euclidean norms |- |; such that

(3.4) |zli < ||

x: S Valel (i=0,1).

Let H = (Ho, H) where H; = (X, |];) and let I X — H and P: H — X be the
identity maps. By (3.4), || P|| - ||| < v/n and so, by applying Lemma 3.2, we get
(3.3). Using now an appropriate basis in X we can reduce both the quadratic

functionals  — |z|? to a diagonal form. Thus, H is isometrically isomorphic to
the couple (I7,13(w)) and by (1.5)

(3.5) w(H) = =(15, 5 (w)) < V2.

This together with (3.3) leads to the desired upper bound.

The lower estimate: Fix ¢ > 1 and define the space I, by the norm

n 1/p
(3.6) (xr)T ez, == {Z 1‘1_kri€k|p} ((zx)T € R?).
k=1

Given n = 2m + e where e € {0,1} we put

(3.7) X =1l el

oo
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where one denotes
75 . s s
p (p,O’ p,l)'
We will establish that
m+e < n
V2 T 2ve
To prove the inequality in case n = 2m (the remaining case is left to the reader)
define x,y € R* by

(3.8) 2(X) <

(3.9 z:=(2,0), y:=(0,2)

where

z:=(L,vg,....(vVO™)

We begin with the inequality

- _ Vat+1 —

3.10 K(it,y; X) £ ; t > 0).
(3.10) (3 X) < Vi ) (t>0)
It is well known and can be proved easily that
(3.11) K(t,z; fln) = }: ¢"? min(1, g~ *¢).

k=1

But the left side coincides with K(¢,y; X), see (3.9) and (3.7), and hence this
function is a continuous broken line with knots ¢¢, i = 1,2,...,m, that equals
0 at 0 and is a constant for t > ¢™. Since the right side of (3.10) is concave it
suffices to check (3.10) at the points t = ¢¢,i=1,...,m

From (3.11) we infer that

K(g\y:X Zq’”/2+q’/2 Z gt

k=i+1

I/\
SIS
LIE

i/2

On the other hand,

K(t,x;7)=K(t,z;m)2 sup { inf [/\+t(1—/\)q k]}

i<k<m {OSA<ZgH/

= sup {¢**min(1,q *t)}.
1<k<m
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The right side equals ¢*/2 at t = ¢ as well. Therefore,
. — . -1 . _
K¢ %) < /2 < YLK (g4 X)

and (3.10) has been established.
From the inequality (3.10) it follows that

y=Tz
for some linear operator T: X — X satisfying

1Tl 5 < —ﬁ,’—lw@-

Now let P: X — fln and I: l?o — X be the canonical projection and injection
respectively, i.e.
Pludv)=v, I(u)=ud0.

Then their norms < 1 and besides,
P(y)=2z2 I(2)=z,

see (3.9). Hence the operator

S:=PTI
maps from [, into [, and
i+l o
.12 gm_gm < X).
(312) I8l e < YD)

Besides, according to the definition of S
(3.13) Sz=z.

Now we will use a special case of the Stein-Weiss interpolation theorem. It
can also be proved directly by the classical Thorin trick; see, e.g., [BK], Section
1.7. In what follows we denote X ® C := (Xo ® C, X; ® C) by X(C).
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LEMMA 3.3: Let T be a linear operator acting from L..(C) into i;n((C) with the
norm A. Then the norm of T as an operator from 7 , ,o(C) into lTl/Q(C) is less

than or equal to A.

We apply the lemma to complexification S. of the operator S defined by
Sc(x) := S(Rex) +iS(Imz), ze€C™,
According to Krivine's result [Kr]
ISelli ¢ —im ey < V2ISllm -

From this and (3.12) and (3.13) it can be concluded that

Vitl
Iz, , < V2@ Tlelz

But z = (1,,/g,...,(y/@)™) and hence its norm equals m on the left and 1 on
the right. So, the inequality can be rewritten as follows:

— -1 -1
X)z\/a m= 1 Vi n.
Vi+1 224 +1

&y > 2
This goes over to the stated lower estimate as ¢ — oo. 1
Remark 3.4: Is inequality (3.5) exact? It may be conjectured that
2(13,15(w)) = 1.

It is worth pointing out the reformulation of the conjecture.

Let x,y € R™ satisfy

n

Does there exist a linear operator T mapping (13,5 (w)) into itself with the

norm 1 such that y = Tz?



Vol. 101, 1997 CALDERON CONSTANTS 301
4. Duality

In what follows let X = (X0, X1) denote a fixed finite-dimensional Banach couple.
If X; = (X, ||-|li) we define the dual Banach couple X" = (X3, X}) by putting
Xf = (X, ||-if) where ||-|I} :== max{(-,y); |lyll: < 1} is the dual Banach norm. It
is important to point out that this definition coincides with the general one, see
[BK], Section 2.4, restricted to the case of finite-dimensional couples. Therefore,
we can and shall make use of the general duality theorems contained in [BK].

THEOREM 4.1: There exists a constant ¢ > 0 such that
(4.1) cle(X) < 2(X7) < ca(X)

for any finite-dimensional Banach couple.

Proof: Since X = = X in this case, it suffices to prove the right inequality. The
proof is based on the following propositions. To formulate the first of them, we
recall the definition of orbit Orb,(Y) of an element y in a Banach couple Y,
namely, the linear space

Orby(?) ={ze€Y+Yy; 3IT: Y-Y,z= Ty}
equipped with the Banach norm

(4.2) Izllom, @) := nf{lITly_y; 2 = Ty}-

PROPOSITION 4.2: Let =* be an arbitrary non-zero element of X§ + X} (= X).
Then there exists an exact interpolation space A of X such that

A* = Orb,.(X")
isometrically.

The result is an immediate consequence of Theorem 2.3.34 of [BK]. We remark
only that in this situation A* coincides with (X, || - ||%)-
On the other hand, according to Theorem 2.3 we get for this A the following:

PROPOSITION 4.3: There exist a Banach lattice ¢ on (R+,dt/t) and absolute
constants, i.e., constants independent of X, ¢1,cz > 0 such that

el < @ ®lala

4.3
(4.3) lzlla < callzll g, )
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for all x € Xo + X;.
Now let the Banach lattice ¥ be defined by

(44) U= K¢(Z1)

where ¢ is the Banach lattice of Proposition 4.3. Recall that the Banach couple

L,is equal to , where the space < 6 <1) is defined by the norm
L, 1 LgL}, h h Lf,O <1 defined by th

{Jo, 05 @OPELIP.

Introduce the associate lattice ¥+ of ¥ by

(4.5) Ilhes = sup { [ swa(3) Filalo < 1}.

PRrRoOPOSITION 4.4: There exist absolute constants c3,c4 > 0 such that

I2*llx, . &) < esllz"llog,. %)

(4.6) . o
1 llow,. ) < sl , cr°y:

for any z* = X§ + X7}.

Here the orbit is taken from Proposition 4.2.
First of all we shall see how the proposition implies the theorem.
Assume elements z*,y* € X + X7 satisfy

Kty X)<K(t,z5X) (t>0).
Then, by the definition of a K-space, we see that
Il &y < 12Nk, , oy

Combining this with the first inequality (4.6) for 2* := 2* and with the second
one for z* := y* we deduce that

”y*”oﬂ,:,(f") < 0433(7)”!/*”KW+(Y‘) < 030433(7)”5’3*”@1),.(7‘)'
But the norm on the right equals 1 and hence

”y*“orb,.(}“) < czeq(X).
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According to definition (4.2) there is a linear operator T X" — X such that

Tl _% < escaze(X)

*

and y* = Tz*.
Remembering Definition 1.1 of the Calderén constant, we then can deduce that

&(_X—*) < 63$4%(Y).

Thus, it remains to prove Proposition 4.4. To accomplish this we remark first of
all that

Jo(X) = Ko(X)
(see Theorem 3.43 of [BK]). The notion X <, Y means that the Banach space X
imbeds into the Banach space ¥ with the imbedding constant less than or equal
to v. Passing to the dual spaces we get

4.7 Ko(X)* < Jo(X)".

But, from the basic duality theorem of the real method (see [BK], Theorem
3.7.2),

(4.8) Jo(X)* = Kg, (X)

and the norms of these spaces are equivalent up to constant ¢ > 0 independent
of X. Now it follows from (4.8), (4.7) and the second inequality (4.3) that

12, . oy < €l gy iy < el e,y < ool

for every 2* € X5 + X7.

Together with the isometry of Proposition 4.2, this gives the first of the
inequalities (4.6).

To prove the second inequality, we have to apply the imbedding

(4.9) K3(X) < J4(X),

where ¥ := K ¢-,('I:1) (see Theorem 3.5.5 and Remark 3.5.7 in [BK]). Unfortu-
nately, the imbedding was proved for the so-called non-degenerate lattices é
only. This means the fulfilment of the condition:

O LY ULY) #0.
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But this does not apply in our case because of the finiteness of the dimension of
X. To avoid the obstruction, we introduce the modified Banach lattice ¢y by

b = ¢+ A,

where ¢ is a fixed non-degenerate Banach lattice and the number A > 0 will be
chosen later on. Recall that the norm of this lattice is defined by

(410) 1Fllex = ,_inf{(lfolls + Allll g}

It is clear ¢, is non-degenerate and therefore

(4.11) K4, (%) 55 Ju, (%),
where
(4.12) Uy = Ky, (L)

According to the definition of ¢ and Theorem 3.3.15 of [BK], the right side of
(4.12) is equal to
Ko(Ly) + AK;(L,) = ¥ + AV,

where ¥ := K é(zl)' In fact, this is an isometry because the constant of K-
divisibility that is presented in the formulation of this theorem, is equal to 1 for
the couple L, (see [SS]).
Now using (4.8), (4.11) and the first inequality (4.3) we conclude that
l2*]lax < 0289(7)“2*”;(45(7)* < 0288(7)”3*”;(”(7(‘)-

< 18er(X)||2* I, x)- < 18c22(X)12"llxy, %)

Here we denote
U, =0+ AT

and take into account the imbedding
1
¢ = P
According to definitions (4.5) and (4.10)

w;=w+n§ﬁ+
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with equivalence of norms (the equivalence constant < 2). Recall that the right
space defined by the norm

1
I£llg+ng g+ = max{[Iflle+, 311 fllg+}-

Now, using the preceding inequality and the isometry of Proposition 4.2, we get

* * 1 *
12 llorb, . () < 36co max{]|z ”Kw(Y)’X“z lky. x)}

Denote by S the unit sphere of K¢+ (7*). By the compactness of S
M= f*“e%||2*”;(@+(')?‘) < 0o.
Putting A = 2M we deduce from the above inequality that
— 1 —
12"l opb,. (7 < 36c2@(X) max {1, XM} = cs2(X)

for every 2* € S.
By homogeneity of a norm, we thus conclude that

2" lorb, . x) < 6433(Y)“Z*“KW+(7‘)~
The proof of Proposition 4.4 is complete. 1

To illustrate the theorem, we introduce the discrete analog (I3,vg) of the
Sobolev couple (L,, qu). Recall that the second space is defined by

n—1
(4.13) lzllop = {lz2l?+ D lokss — 2|7}
k=1
The couple (I, vy) is denoted in Section 1 by W: as well.
The dual norm to norm (4.13) is equal to

’
. q 1/q

>

s=1

n

EISERSY

k=1

(z €R)

where 1/g+1/¢' = 1.
Passing on to the new coordinates y, := Y ;_, i, we see that

2 lwg) = Nyllens  M2llagye = Nyl -

Now, using Theorem 4.1, we deduce:
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COROLLARY 4.5: Uniformly inn, p, q

a(ly,vy) = (I}, vy).

In particular, within the notation of Section 1,
=N

(4.14) #(loo (L), LiD(An)) ~ 2(W7). B

5. Asymptotic for &(A(A,))

Let M be a subset of Ry and A(M) denote the Lipschitz couple (Ao(M ), A1(M)).
Recall that Ag(M) is defined by the norm
w(t;
P lavian =sup 250 0 <o <),
t>0

where

o(t:f) = sup 1f(a) = F0)
a,bGM

is the modulus of continuity of f. We consider this as a Banach couple using

1
Ay, = {0,—,2,...,1}.
n'n
— )

THEOREM 5.1: &(A(A,)) = log(n+1

factorization by constants.
Now let

Proof: The upper estimate follows immediately from Theorem 6.1 (see also
Proposition 6.3 for a slightly more exact result).
To prove the lower estimate we introduce the functions f and g, by

(5.1) F@):=tY? and  gn(t) :=c§:2—i/2ui(t) (t>0)

=1

where m := [logyn] — 1 and ¢ := (v/2 — 1)27%/2.
The sequence {u;} is defined by

(5.2) u;(t) :=u(27) (i€N)
where u: Ry — R is the broken line of period 1 such that

(5.3) u(t) = [4t+1f if -3 <t <L
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PRroOPOSITION 5.2:
(a) gm € A1/2(Ry) and, moreover,

(5.4) w(t; gm) < min{2™/%¢, /2 1}.
(b) For every linear operator T: A(Ry) — A(R, ) satisfying
Tf= 9m

the inequality
Tz @y ~E®s) 2 am
holds with an absolute constant c¢; > 0.

We first deduce the theorem from this proposition and then prove it.

Let R,: A(Ry.) — A(A,) be the restriction operator and E,,: A(A,) — A(Ry)
the extension operator defined as follows:

(i) Eng is the linear function on [1—;—1, %] that interpolates g at the ends

(7=1,...,n);
(il) (Eng)(t) == (Eng)(1) (t 2 1).
Obviously F, is a contraction, i.e., its norm < 1.

Without loss of generality, we suppose hereafter that n = 27+, Put z:= R, f
and y := R, gm. Note that by the choice of n,

E.y=gm.

Therefore, if a linear operator S: A(A,) — A(A,,) takes z to y, then

(EnSRn)f = gm.
Besides, according to assertion (b) of Proposition 5.2,

am < HEnSRn||K(R+)——>K(R+) < 1Slzea.)-

If we now establish that
(5.5) y < zmod(A(A,))
then, by Definition 1.1 of the Calderén constant, we deduce that

#(A(An)) = e1m > cylog(n + 1)
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with some absolute constant ¢ > 0.

To prove (5.5) we make use of the identity
(5.6) K(t,g: A(M)) = G(t;g) (t20)

where & stands for the least concave majorant of w (see [BK], Proposition 3.1.19).
We mention that this proposition deals with the couple (I, (M), Lip(M)) but a
simple change of the proof gives (5.6). So, according to (5.6) and (5.4),

K(t,y: A(A)) = &(t, Rugm) < &(t, gm) < min(¢1/2,1) = min(f(t), 1).

But &(t, R,gm) is a continuous concave broken line with knots j/n, j =1,...,n,
equal to a constant, if t > 1. Therefore, the above inequality yields

K(t,y: K(An)) < (BnRof)() (2> 0).
But the right side is equal to w(t, E, R, f) and
w(t, EnRnf) S w(t, Rnf) < K(t, Ruf; A(A0)).

Remembering that x := R, f we see that this completes the proof of (5.5) and of
the theorem.

Proof of Proposition 5.2: Since
luillapyy =2-2% (6=0,1)
by the definition of u;,
. 4] _ . 14\ O
w(t,u;) < min {t luillas ey} = 2 min (2°)

Hence,

w(t, gm) <CZQ /2, (t,u;) <2c{t221/2+ Z 2_,/2}

i=I+1

) ol/24 9- (z+1)/2}
<2c +
- {1 ~1/V2 1-1/V2

for every I. Choose [ satisfying 27'~1 < t < 27!, We then see from the above

inequality that

(t gm \/—\/_— C\/_ \/—

by the choice of c. Taking [ = 0 or I = m we complete the proof of part (a).
The proof of part (b) is based on two lemmas. The former is readily seen by

direct calculation.
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LEMMA 5.3: fol u;(t)u;(t)dt = 0,;/3, where d;; is the Kronecker symbol.

To formulate the next result we introduce the sequence of functions {¢;}icz

by . . .
(t) = 2!~ 1 if 271 <t <2
PR= o2 f - VBT - 1) if 2 < t < 20

and ;(t) := 0 for other £ € R.
Now let T: A(R; ) — A(R,) be a bounded linear operator and let

¥ :=Tye; (i€).

Then the following statement is valid.

LEMMA 5.4:
(a) For f(t):=tY2 (t >0)

Tf = Z 24/%4; (convergence in Ag(Ry.) + Ay (Ry)).
1€Z
(b) For everyt > 0,
D )] < 4Tl aocry):
i€Z
(€) Yiez 2 10i(®)] < |ITla, r,) a-e. on Ry.
Remark 5.5: In this formulation we regard elements of A;(Ry) as functions
which are equal to 0 at 0 (¢ =0, 1).

Proof: 1t is easy to verify that
0<wi <1, [willayryy=2"" (i€2)

and that
f= Z 2/2¢;
i€Z
where the series on the right converges in sum Ag(Ry) + Ay (Ry ). Since T is by
definition a bounded linear operator in this sum, part (a) is established.
We remark now that supports of functions p; and ¢; are mutually disjoint if
|i — j| > 1. Therefore, for every sequence («;)icz with a finite support,

” Zai‘Pi
i€Z

< 2.2 sup || s = 4sup 2~9|q;
Ag(Ry) — ieg” MZHAO(RJ') ieg | ll
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where 6 =0, 1.
According to Remark 5.5, ¥; := Tp; equals 0 at 0. Therefore,

l};aiwi(t)' < “ zi:aﬂ/)’

Now fix ¢ € Ry and choose a; := sign;(t) if || < N and «; := 0 otherwise.

< 4T ; t > 0).
Ao(Ry) = ” IIAO(R+)811}P|CV¢| (_ )

Letting N — oo we get assertion (b) from the above inequality.

Similarly, since

IFlla @) = I lLw @y

we may conclude that
I Zaiwé(t)’ < ” Zaiw

for almost all ¢ > 0.
Choosing in the inequality a; := 2¢sign¢/(¢) if [{| < N and o; := 0 otherwise

<4|T sup 2% ),
ey S AT 502 o

and letting N — oo, we get assertion (c).
We now return to the proof of part (b) of Proposition 5.2. We attain this by
estimating in two different ways the integral

1 m -
(5.7) Q::/Ogm(t) ;2 u;(t) | dt.

Using Lemma 5.3 we readily see that

Q= zcm.

Wl

Now we shall prove that
(5.8) Q< alTlzg,)

where ¢; is an absolute constant. Comparing this with the preceding equality we
obtain the desired estimate of ”T”K(m)-

So it remains to establish (5.8). To this end we insert the expression of g,
ie.,

gm =Y 2%y (=Tf),

1€Z
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into integral (5.7) and divide the resulting sum into two parts:
m 1
Q=>"%" 2k/2/ Ve (B)u; (t)dt =: Qo + Q,
keZ j=1 0

where Qg := Y ;o and @ :=3 ;.
Applying inequality (b) of Lemma 5.4 and bearing in mind that |ux| < 1, we

see that
1 m
Qo <y 27 / (Zw)k—j(t)‘) max fuj|dt
k<0 0 Mo ==
4 4
< o 1l|T”Ao(R+) < 7§‘_—i||T“X(R+)~
Now put

vi(t) :=/0 u;(s)ds.

According to the definition of u; (see (5.2) and (5.3)),
0<v; <271 and v(0) = v{(1) = 0.

We may now integrate by parts and apply inequality (¢) of Lemma 5.4 to

conclude that

1 m
o =Y 27 [ S0
i=1

k>0
m

<o [ (o2, 0) max (20t

1
k>0 0 =1

2V2 2V/2

< \/—T_-i“THAl(RH < —\/?_-iHT”K(RH'

This implies (5.6) and completes the proof of Proposition 5.2.

6. Extreme property of A(A,)

In this section it will be shown that the couple A(A,) has asymptotically the
largest Calderdn constant among the couples A(M) defined on n-point subsets

M of R. More precisely, we prove
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THEOREM 6.1: For every n-point subset M of R

&(A(M)) < 4logn.
Proof: We prove by induction on n := #M the following more general
STATEMENT: Let X = (Xo,X;) be an arbitrary Banach couple and let = €
Xo+ Xy and y: M — R satisfy
K(t,y; A(M)) < K(t,z; X) (t>0).
Then there exists a linear operator T: X — A(M) taking r to y and satisfying
(Tl _xary < 4log(#M).

The result is correct for #M = 2. Indeed, dim A(M) = 1 in this case and we
can consider A(M) as (R, R). Then the K-functional of y is equal to |y| min(1,t)

and therefore [y| < K(1,z; X). Applying the Hahn-Banach theorem, we may
find a linear functional f: Xy + X; — R such that

If(2)] € K(1,2X)

for all z with the equality for z = 2. If we then put

f(z)

T(z) = K(1,x;7)y’

we have obtained the desired operator T
Suppose now that the statement is true for every M C R with #M =n -1
and we prove it for M = {ay,...,a,} (n > 3). Here we assume that

a1 < a2 << Q.

To accomplish this we first reduce the proof to case X = L. To this end one
remarks that  — K (-, z; X) is a sublinear map from Banach space Xy + X, into
Banach lattice L2 + L. According to the Hahn-Banach-Kantorovich theorem,
there exists a linear operator U: Xg + X; — L%, + LY, such that

Uz| < K (-, 2 X)
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for all z € Xy + X, with the equality for z = x. Moreover,

-3 Kt,x;X .,
V2l = supt=1(U2)(0)) < sup KEEE < e (i< 0,0)
t>0 t>0

In other words, U maps X into Lo, and its norm < 1.
Therefore, in order to complete the proof, it suffices to find a linear operator
S: Lo, — A(M) such that
Sf=y

and, besides,
(6.1) ”S“Zw_,K(M) <4logn

and then put T := SU. In this situation, f := K(-,z; X) but we shall prove the

assertion for any f € L9 + L1 satisfying

(6.2) K(t,y,A(M)) < f(t) (teRy).

For determining S we associate with each point a; € M the restriction operator
Ri: A(M) — A(M ~{a;}) and the extension operator E;: A(M “{a;}) — A(M)
given by

(Eig)(ai) == (1 — ai)g(ai-1) + aig(aiy1)

where
a; — Q-1 .
= ———"— (1<i<n), ar=1; oa,=0.
Aiq1 — Qi3

Here we put g(ag) = g(an41) :=0.
It is readily seen that

(6.3) N Eillxp ~gaspy—kary =1 (L < i < m).
We also define the linear operator A;: Lo, — A(M) by
(Aig)(aj) = [(1 - a,-)g(a,- - a,'_l) + ai‘P(ai+1 —_ ai)](sij,

where 1 < j < n (provided g(a; — ag) = g(ans1 — an) :=0).
It is easy to see that

ALy~ ary < 2max{a;, 1 — o}
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Since 0 < a; <1 and HAi”Lgo—»AO(M) < 1, we conclude that

(6.4) ”Ainw—»X(M) <2 (1<i<n).

Identity (5.6) and inequality (6.3) imply

[y(a:) — (EsRiy)(a:)] < (1 - as)ly(a:) — y(ai-1)] + eily(a:) — y(aiv1)]
<(1—-aw)f(a;i —ai-1) + aif(@it1 — ai).

Hence we deduce that
(6.5) y=ERy+elif

for some ¢; € [-1,1] (1 <7< n).
Since

K(t, f; L) = f(t) > f(t),

where f is the least concave majorant of f, inequality (6.2) yields

According to the assumption of induction, there exists a linear operator T;: Lo, —
A(M ~{a;}) such that

(6.6) T;f = Ry
and, in addition,
(6.7) 1T~ & ~fapy < 4l0g(n — 1),
We now define the required operator S by
L&
8=~ ;(E{z’} + &)
From (6.5) and (6.6) it follows that
Sf=y.

To estimate the norm of S one notes that support supp(Q;p) (¢ € L% + L))
consists of one point at the most (1 < i < n). Hence, in view of (6.4)

n
‘A"H < Qillz o <4
“ ;e I —xan S 2 ex 1Az xon <
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and the inequality being combined with (6.3) and (6.7) gives
4
HS”ZOQ_,X(M) < 410g(n -1)+ -T; < 4logn,

i.e., inequality (6.1) is proved. ]

To demonstrate another asymptotic behavior of a&(A(M)) we consider the
dyadic tree T,, (where n is the number of vertices) with the metric d induced
by the tree-structure of T,,. So d(z,y) equals the number of edges of the shortest

way in T,, connecting = and y.
THEOREM 6.2: &(lo(T5), Lip(Ty)) = loglogn.

Proof: Let b = {v1,...,v) C T, be a branch of the maximal length. Let R
be the restriction operator to b, i.e., Rf := f|5, and F be the extension operator
defined as follows. If f: b — R and b; is the branch emanating from v; € b, then

we put

(Ef)(v) = f(vi)

for every v € b; (1 < i < m —1). It is readily seen that R: (I (T%),Lip(T,)) —
(loo(b),Lip(b)) and E acts in the inverse direction. Besides, norms of these

operators < 1. By Lemma 3.2 we therefore conclude that
&(loo(b), Lip(b)) < %(loo(Tn),Lip(Tn))'

But b is isometrically isomorphic to the subspace {1,...,n} of R. Therefore the
left side of the inequality is equal to &(A(A.,)). Now, applying Theorem 5.1, we
obtain the desired lower estimate

c1logm < &(l(T,), Lip(T))

where ¢; > 0 is an absolute constant (and n = 2™).
To accomplish the upper bound we need the following useful proposition, in
which (S, d) is a finite-point metric space and

4(S) = ggxyld(x,y), d(S) := maxd(z,y).

z)y
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PROPOSITION 6.3: #(loo(S), Lip(8)) < 3log, (%ﬁ%))

Proof: It is clear that

SN fllipesy < Nl sy < A fllLipes)

for any f: M — R. The norm of l(S) is, of course, equal here to

sup, yes |f(2) = f(=z)l.
Therefore, the statement follows from the next more general result.

Let X be a Banach couple such that
(6.8) aflzllx, < llzllx, < Bllzllx, (z € Xo+ X1)
where «, 3 > 0 are constants.
LEMMA 6.4: 2(X) < 3log, (%ﬂ)

For the sake of completeness, we outline the (standard) proof of the result.
Using (6.8) and the definition of K-functional, we conclude that

3 J el ift<ao
(6.9) K(f,z,X)_{”z”X0 ift> 3 (z € Xo+ X1).
Now let = and y satisfy
(6.10) K(f,5;X) < K(t,z; X).

Denote the left side by K(¢) and suppose that y = yl(O) + yi(l) is an optimal

decomposition for K(2'a), i.e.,
K(2a) = Iy llx, +Zally!"1x, -
Here i € {0,1,...,1} and ! € N is defined by

2-la < g < 2.

Then, from (6.9), it follows that

y=yP =0, 4=y =y.

Putting y; := ylgo) - ?/1(2)1 (= yﬁ)l h yfl)) we get
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and

(s)

xo < ot + o lix, < 3(2°0) K (Za,y;X) (s =0,1).

Hyil

Bearing in mind (6.10) we now find a linear functional f;: Xo + X; — R such
that
filz) =1
and, besides, .
K(2ia,2; X)
1fi(2)| £ ———=
K(2a,r; X)
If we now define T: Xp+ X; — Xo+ X1 by

(Z S X() + Xl)

l
Tz:= Zfi(z)yi,
i=1

then
l l

T=Y filyw=Y v=yv,
i=1

i=1

and moreover,
i
ITzl|x, < 32(2"a)"3K(2’a,z;X) (s =0,1),
i=1

by the choice of f; and (6.10). But each term on the right < ||z||x, and hence

#(0) < [Tz <3 < 310g, (2).

Returning to the proof of Theorem 6.2, we remark that
0(Tn)=1 and d(T,) =2m—2<2log,n.

It remains to apply Proposition 6.2. ]

Remark 6.5: Now let T be a finite tree and let the distance of adjusted vertices
x,y € T equal w(z,y) > 0. The distance d(z,y) of two arbitrary vertices z,y is
measured by

d(z,y) = {lilf} Z w(Ts) Tit1)
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where the infimum is taken over all ways in T  connecting = and y. In fact, we
have proved that
2(loo(T), Lip(T)) ~ log d(T),

in case w = 1.
Of course this result is incorrect in general, but using a modification of the
proof of Theorem 6.1, one can state that

2(loo (T), Lip(T, d)) < clog(#T)

with constant ¢ independent of T and d.

7. Applications

As we have mentioned, A(R, ) is not a C-couple (see [B] and [Cw]). Below we
shall prove essentially a more exact result. For its formulation we have to use
Definition 7.1 [Cw]: X is said to be a Cy-couple (1 < p < o) if for every
z,y € Xo + X, satisfving

M,(z,y) = {/R+ [%i—:i—%ré;}l/p < oo

there exists a linear operator T: Xg + X1 — Xy + X; such that
y =Tz,

and besides,
ITl_x% < cMp(z,y)
where ¢ is an absolute constant.

It is clear that the notion of a Cu-couple and a C-couple coincide. On the
other hand, every Banach couple is a Cj-couple (see [Cw]). It is also proved in
this paper that the couple A,(Ry) := (L,(Ry ), Lip,(R+)) is a Cy-couple with
q:=2p/|p— 2| if 1 <p < co. Here Lip,(R;) is defined by the norm

wp(f,t
| fllLip, ®4) == sup —“—p(t ),
£>0

where

1/p
wp(fot) = sup { / If(x+h)—f(x)|”dx}
< Ry

O0<h<t
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is modulus of continuity of f in L,.
We remark that ¢ — 2 as p — c0. In contrast to this the following statement
is valid.

THEOREM 7.2: A(Ry) :=Ax(Ry) is not a Cp-couple for any p > 1.

Proof: Suppose that A(Ry ) is a C,-couple for a fixed p > 1. Then for functions
gm(t) and f(t) = t'/2 of Proposition 5.2 there exists a linear operator T: A(R;) —
A(R,) such that

(7.1) Tf = gm,
and, besides,

(7-2) “T||K(R+) < ch(f, Gm)s

where the constant c is absolute.
But by (5.6) and the choice of f we see that

K(t, [y A(Ry)) = weo(f31) = '/%.
In addition, by (5.6) and (5.4),
K (t, gm; A(Ry)) < min{2™/%t,11/2,1}.

Hence, the right side of (7.2) is majorized by

1/p
c{/ rnin{Zmp/zt_””/?,t‘l,t‘l“”/z}dt} < eym'/?.
Ry

Therefore,
ITls,, < am’? (>1)

contrary to (7.1) and assertion (b) of Proposition 5.2. ]

A generalization of Proposition 5.2 can be used to prove a similar statement
for the couple A1(Ry) = (L1(Ry),Lip,(Ry)). To avoid further technical details

we confine ourselves to the following weaker result.
THEOREM 7.3: A (R, ) is not a C-couple.

Proof: Let B, C L;(Ry) be the subspace of continuous piecewise affine

functions with nodes at 0,1,...,n, equal to 0 if t > n.
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LEMMA 7.4: There exists a linear projector m,: L1(R.) — B, (n € N) such that

sup [|m, |z, < oc.
n

Proof:  We choose a fixed continuous function ¢ on [0,1], which possesses the
following property:

1 1
(7.3) /0 o(x)dr =1, /0 ro(x)dr = 0.

The desired operator m, is defined by

(a) Tnf € Bn (fG LI(R+))§

(b) ma(f3d) = [T oz — i) f(x)dz, i € {0,1,...,n ~ 1}.
If fe By, then f(z) =Aix+C;, i<z <i+1,and

141
r(fii) = / (@ — i) (A + Ci)dz = f(i) (0<i<n~1)
by (7.3). Besides, m,(f;n) = 0= f(n) by the definition of B,, and therefore,

mf =f (f € Br).

We are now going to estimate the norm of 7. First, by definition of 7, and the

trapezoid rule,
/ |7, fldx < Z |mon(f19)] < max|tp|/ |f(z)|de,
=0

which gives

7oL, &y < max[p|.
The Lip;-norm of 7, f does not exceed

1 n—1
/R o (2) <Z fa+i+l)-fa+ i)r) do < max |g| - Varg, .
=0

+

But the variation equals |/f|lLip,®,) by the Hardy-Littlewood theorem.
Therefore,

lmnllLip, (ry) < maxfel. W
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Let us return to the proof of the theorem. Introduce the finite-dimensional
couple X by
Xo:=(Bn, || ll£), X1:= (Bn, |l llLip,)-

According to Lemma 7.4, X is a retract of A; and therefore Lemma 3.2 yields
(X) < (max |¢|)?e(A1(Ry)).
Hence, by duality (see Theorem 4.1), we obtain

(7.4) az(X) < 2(Ai(Ry)),

the constant c; > 0 being independent of n. Simple calculation of the dual norms
shows that

Il

x; = sup |f(z)]
0<z<n

/OI f(t)dt’ (f € By).

The differentiation f — f’ maps this couple isometrically to the couple ¥ =
(Yo, Y7) defined by

/1

X; = Sup
x>0

Ifllve = _sup 1£(2) - FE+DI=1F @A
Iflly, = sup [f(z)— f(0) = sup |f(i) = F(O)] ~ [I(f(2))llao-
0<z<n 1<i<n

Therefore, Theorem 5.1 implies
crlogn < 2(Y) = 2(X).
Together with {7.4) this leads to the inequality

c1logn < @(A1(Ry))

where n is arbitrary, ¢; being independent of n. Letting n — oo, we complete
the proof. [
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