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ABSTRACT 

The Calderdn constant m(.~) is a numerical invariant of finite-dimensional 

Banach couple )( -- (X0,X1) measuring its interpolation property with 

respect to linear operators acting in X. In the paper we prove the duality 

relation re(X) .~ ae(.~*) and calculate the asymptotic behavior of ~e(~:) as 
dim .~ --~ cc for a few "classical" Banach couples. 

1. I n t r o d u c t i o n  

The aim of the paper is to study properties of a new invariant of a finite- 

dimensional Banach couple X = (X0, X1). For some reasons (see (1.3) below) it 

is named in the sequel the C a l d e r 6 n  c o n s t a n t  of X and is denoted by ~e(X). 

The origin of the notion and its applications lay in interpolation space theory but 

we will see that  there are fruitful connections between this field of investigations 

and the local theory of Banach and metric spaces. 

To introduce the basic concept consider the "doubled" Minkowski compact 

A4n consisting of all n-dimensional Banach couples. An element X of Adn is 

regarded as n-dimensional space X (over R) equipped with two norms I1" I1~, so 

that  Xi = (X, I1" Ili), i = 0, 1. 
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Let x, y be elements of X. We say that y is K - m a j o r i z e d  by x in X (written 

y < x mod X or simply y < x when no confusion can arise) if 

(1.1) K(t, y; X) <_ K(t, x;-X) (t > 0). 

See [BL] and [BK] for the definition of K-functional and other concepts and 

results of interpolation space theory; see also Section 2 below. 

Definition 1.1: The Calder6n constant of X is defined to be 

~e(X) := ~upi~f{llTII2-; y = Tx} 

where IITIIz stands for the norm of linear operator T: X -* X in X, i.e. 

IITII~-:= max IITllx,__,x,. 
/ = 0 , 1  

The following natural questions related to the definition will be discussed in 

this paper: 

(a) What  is the attainable upper bound of re(X) on A/In? 

It follows from Theorem 3.1 below that this quantity is equivalent to n as 

n ---~ o o .  

(b) What  is the relation between re(X) and Be(X*), where X* := (X~, X~) is 

the dual couple? 

Theorem 4.1 states that 

with constants independent of dim X. 

(c) What  is the asymptotic behavior of ~e(X) for the "classical" Banach 

couples? 
n W n The most important classical couple is (epo ( 0),epl (wi)) where 

Ilxll  (w) := Ix /w l p (x �9 
i = 1  

But it was firstly proved by Calder6n [C] that 

(1.3) ~e(e~, e~) = 1 
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and then the efforts of many mathematicians resulted in the Sparr theorem [Sp] 

which leads to the inequality 

(1.4) ~(~p0(W0),~pl (Wl)) _< 2. 

It is worth pointing out that, by preceding results of Semenov and Sedaev [SS] 

and also of Sedaev alone [Se], 

(]..5) ~(~p(W0), ~p(Wl)) < 21-1/p. 

Another important classical couple is the Lipschitz couple ( ~ ( S ) , L i p ( S ) )  

where (S, d) is a finite metric space and 

I f ( s )  - f ( y ) l  
IIfHLip(S) := sup ~#y d(x, y) 

Factorizing by constants one can consider this couple as an element of A/i,_I 

with n = card S. 

In Section 5 we will show that the asymptotic behavior of ae(X) for Lipschitz 

couples is nontrivial and strongly connected with the metric properties of S. So, 

in the case of the metric subspace 

/Xn := 0, " " ~  n ' 

of R we prove (Theorem 5.1) that 

~e(eoc(An),Lip(A,~)) ~ logn (n --~ cr 

We single out two corollaries of this result only. 

Let S = Tn be the dyadic tree of n = 2 m - 1 vertices with the metric induced 

by the tree structure (the distance of two adjacent vertices equals 1). Then we 

state (see Theorem 6.2) that 

ae (e~c(Tn),Lip(Tn)) ~ loglogn (n ~ oc). 

Now let W=~ := (ep, Vp) be the discrete analog of the Sobolev couple 

(Lp(O, 1), Wpl(0, 1)), where 

n-- 1 } 1/p 
Ilxllv~ := I~11 p + ~ Ix~+i - x~l' 

k----1 

(z c Rn). 
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Observing that  Lip(An) = v~ up to factorization by constants we obtain by 

duality 

log n (n 

It is interesting to find the asymptotic of ee(W-~p) for 1 < p < oc. Cwikel's result 

[Cw] suggests the following conjecture: 

ae(~pp) ,~ (logn) 11/2-1/pl (n --* oo), 

where 1 < p < co, but now we can only prove a weaker result. 

Finally, in Section 6 it will be proved that 

ae (eo~ (S), Lip(S)) _< 4 log(#S) 

for an arbitrary metric subspace of R. 

QUESTION: Does a similar inequality hold for 

(a) finite-pointed metric subspaces of ~d ? 

(b) finite-pointed metric spaces? 

Some applications of the formulated results to the so-called "main problem" of 

the interpolation space theory are discussed in Section 7. The relevant definitions 

and results of this theory will be described in Section 2. 

2. C-couples  

Applications of the formulated results will be concerned with interpolation 

properties of Sobolev couples. For the convenience of the reader we present here 

the relevant material from the interpolation space theory. For details omitted we 

refer the reader to [BK] or [BL]. 

A pair X = (X0, X1) of Banach spaces is said to be a B a n a c h  couple  if both 

Xi are continuously imbedded into a Hausdorff topological vector space. 

A linear operator T: X0 + X1 ~ Y0 + Y1 is said to map from X into Y if 

T(Xi) c Y i  (i=O, 1) 

and the norm 

is finite. 

fITfl _   := {[[T[x, } 
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The notion of X~-majorization and Calder6n constant re(X) introduced in 

Definition 1.1 for finite-dimensional couples can be readily extended to the 

general case. The norm I]THx of this definition is clearly to be replaced by 

IITIIx_X. Recall that the K-functional of X is defined by 

K ( t , x ; X ) : - -  inf ([(Xo[[xo+t[[xl[[x~} ( t>O)  
~c----x0 ~-X 1 

where x E X0 + X1. 

Definition 2.1: X is called a C-couple if its Calder6n constant is finite. 

The next characterization of the set of all interpolation spaces of X is a direct 

consequence of the definitions. For its formulation recall that  a Banach space X 

is called an i n t e r m e d i a t e  space of X if 

XoAX1 C X C X o + X 1 .  

If in addition 

IlT[xllx-x <-]ITIIx_~ 

for every bounded linear operator T: X --* X, then X is said to be an (exact)  

i n t e r po l a t i on  space of X. 

Finally, the norm of X is called Kc-mono tone  w i t h  respec t  to  X if the 

following property holds: 

y _< x m o d X  ~ IlYllx <- cllxllx. 

PROPOSITION 2.2: 

(a) f f  the norm of X is Kl-monotone with respect to X ,  then it is an exact 

interpolation space of X .  

(b) Conversely, if X is an exact interpolation space of X ,  then its norm 

possesses K~-property where c = ~e( X ). 

Of course, the second statement is informative for C-couples only. 

Calderhn [C] was the first to characterize the set In t (L1,L~)  of interpola- 

tion spaces of (L1, L~)  by the K-monotone property. Another description was 

proposed independently by Mitiagin [M 1. Calder6n's proof is based on the 

result equivalent to 

~e(L1, Lo~) = 1. 
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Since then many other C-couples have been discovered; see a brief discussion 

below, and papers [CN] and [Ka] containing relevant references. For our goal the 

following constructive description of Int(X) proposed by Brudnyi and Kruglyak 

(see, e.g., [BK], Theorem 4.4.5) is of importance. 

THEOREM 2.3: Let X be a C-couple and let X be an exact interpolation space of 

X .  Then there is an absolute constant c > 0 and a Banach lattice r of measurable 

functions on (R+, dt / t )  such that 

IlxllK,( ) -< Ilxllx _< c (X)IIxlIK.( ) 

for all x E X .  

Recall that the interpolation functor Kr of the real method is defined by 

finiteness of the norm 

IIXIIK,( ) := ILK(., x; X)l l , .  

Remark 2.4: The book [BK] contains a qualitative version of the theorem. 

But on checking the constants that appear in the proof we obtain the desired 

inequalities with c < 23. 

Thus, in the case of C-couple X the set Int(X) coincides with the set {K~(X)} 

of all K-spaces of X. Unfortunately, the problem of determining whether a given 

X is a C-couple, is very difficult. In accordance with our goal we present here a 

few results in this direction. 

Let Lp (w, d#) be a weighted Lv-space with the norm 

1/p 

We denote this space by Lv(w) if (~, d#) = (~?~_, dt/ t)  and we denote Lv(w) by 

Lp if w(t) := t ~ (t e Kr where 0 < r < 1. 
- -  - -  - -  r Within this notation X~,v and X~p stand for Kr with r = Lp(w) and Lv, 

respectively. 

THEOREM 2.5 ([Sp]): (Lvo(Wo),Lvl(Wl))is a C-couple. 

The result concluded a considerable amount of subsequent effort devoted to 

generalization of Calderhn's result on weighted Lp-couples; see, e.g., [Ka] for the 

relevant references. The theorem was independently but a little later proved by 

Cwikel who applied it in order to prove the following striking result. 
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THEOREM 2.6 ([Cw]): (Xropo,X~lp~) is a C-couple for a n y X  ifO < ro, rl < 1. 

To formulate the generalization of this theorem we associate with the couple 

(Lpo (wo), LB~ (wl)) the pair {w0, wl} of concave functions defined by 

1 
(2.2) wl(s) := llmin(1,t/s)linp,(~, ) (s e R+) 

where i = 0, 1. 

The pair {w0, wl} of concave positive functions of R+ is said to be f a c t o r a b l e  

if 

1-~, ~, ( i = 0 , 1 )  (2.3) wi ~ ~O 0 ~1 

for some concave functions ~ :  R+ ~ R+ and numbers ri e (0, 1) (i = 0, 1). 

Throughout the paper the equivalence of two functions f .~ g means that 

c - i f  <_ g <_ c f  

for some c > 0. The infimum of such c is said to be the constant of the equivalence. 

Within the notion we may formulate 

THEOREM 2.7: 

(a) If  {w0, Wl } is factorable then (-Xwo,po,-X~I,p, ) is a C-couple for any X.  

(b) The factorization condition is also necessary for (-X~o,po,-X*o~,pl) to be a 

C-couple in case -X := (lot(R+), Lip(R+ )). 

The result has been proved in [BS]. 

Now let A(w) be the Lipschitz space defined by 

If(Y) - f (x) l  
IIfHA(,-) :---- sup 

�9  (ly- xl) 

where w: R+ --* R+ is concave. We regard A(w) as a Banach space by factor- 

ization by constants. In particular, (A(w0),A(Wl)) with ~ ( t )  := t i (i = 0, 1) 

coincides with the couple of the formulation of Theorem 2.7(b). Basing ourselves 

on the explicit form of K-functional for this couple, see [P], we deduce that 

Kr = h(~)  (r := L~(w))  

isometrically. 

This leads to 



296 Y. BRUDNYI AND A. SHTEINBERG Isr. J. Math. 

COROLLARY 2.8: (A(co0) , A(cdl) ) is a C-couple ilff (cd0,Cr is factorable. 

The proof of Theorem 2.6(b) is based on the approach presented and may be 

treated as one of the applications of the method. In Section 7 we shall demon- 

strate some other applications restricting to the simplest case of Lipschitz couples 

of p-integrable functions (Lipp(N+), Lp(~-)) for p = 1, oc. In case 1 < p < ec, 

i.e., when Lipp(N+) = WI(N+), the couple for the first time was studied by 

Cwikel [Cw], who proved that it was not a C-couple and, what is more, estab- 

lished a qualitative version of this statement. In case p = c~ the same statement 

was proved by Bychkova [B] and by Cwikel and Mastylo [CM] in two different 

ways (see also Corollary 2.8 for the third proof of the result). But we shall also 

prove that the couple (Lip(N+), Loo(N+)) is as bad as possible with respect to 

the C-property; see Theorem 7.1. The same fact is correct in case p = 1, but 

its proof requires a modification of the method presented. To avoid technical 

details we shall prove the weaker but also new result: (Lip I (N+), LI(N+ )) is not 

a C-couple, see Theorem 7.3. 

3. Upper bound for n -d imens iona l  Calder6n constants 

Within the notation of Section 1 let us denote 

~en := max{~e(X); X E M , } .  

THEOREM 3 . 1 : n / 2 v / 2  <_ Oen < V/2rt. 

Proof (The upper estimate): We begin with the following general statement. 

Let X be a r e t r a c t  of Y, i.e. there are bounded linear operators I: X --* Y 

and P: Y --~ X such that 

(3.1) P I  = idz.  

LEMMA 3.2: se(X) _< (1111[. HPII)2~e(Y). 

Proof'. Suppose that x, y E Xo + X1 satisfy 

(3.2) K(t, y; X) <_ K(t, x; X) (t > 0). 

Then, it follows from (3.1) that 

g( t ,  Iy; Y) < IIIIIK(t, y;-X) <_ IIIIIK(t, PIx,-X) <. IIIll IIPIIg(t, Ix; Y). 
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From this and from Definition 1.1 of ~e(Y) it follows that  Iy = T(Ix) for a 

bounded linear operator T := Y -* Y such that 

IITII ~ IIII1" I le l l ( l+ ~)~e(Y) (~ > 0). 

Thus, using (2.1) we conclude that 

y = %bx := (PTI)x 

and 

ii:~ii < (illH. IIPil)2(1 + ~)~(Y). 

This gives the stated inequality, i 

We are now in a position to show that for any n-dimensional couple X there 

exists a couple H of Hilbert spaces of the same dimension such that 

- -  F 

(3.3) re(X) ~ n~e(H). 

Indeed, according to the John theorem, there exist euclidean norms I' ]i such that 

(3.4) Ixl~ ~ Ilxllx~ ~ ~ l x l ~  (i = o, 1). 

Let H = (H0, H1) where Hi = (X, 0-]i) and let I: X -~ H and P: H --* X be the 

identity maps. By (3.4), liPID. ]]Iii -< v ~ and so, by applying Lemma 3.2, we get 

(3.3). Using now an appropriate basis in X we can reduce both the quadratic 

functionals x --* ix] 2 to a diagonal form. Thus, H is isometrically isomorphic to 

the couple (l'~, l~(w)) and by (1.5) 

(3.5) ~ ( ~ )  -- ~ ( ~ ,  t~(w)) < v~. 

This together with (3.3) leads to the desired upper bound. 

n The lower estimate: Fix q > 1 and define the space l~, r by the norm 

[" n ,i 1/p 

(3.6) H(xk)~i[l~. := lk~=l,q-krxkiP I ((Xk)~ E Rn). 

Given n = 2m + e where e E {0, 1} we put 

.-m .-m+e 
(3.7) X : =  l ~  �9 l 1 
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where one denotes 

We will establish tha t  
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- s  $ s lp := (lp,o, lp,j). 

- -  m + e  n 

(3.8) ~ ( x )  < ~ < 2 - ~  

Isr. J. Math. 

(3.9) 

where 

x := (z, 0), y := (0, z) 

z :-- (1, v ~ , . . . ,  (v~)m) �9 

We begin with  the inequali ty 

v ~ + l  g - -  
(3.10) K(t,y;-X) < ~ ~ (t,x; X) (t > 0). 

I t  is well known and can be proved easily tha t  

(3.11) K(t,z;l'~l ) = ~ qk/2min(1, q-kt). 
k = l  

But  the  left side coincides with K(t, y; X),  see (3.9) and (3.7), and hence this 

funct ion is a continuous broken line with knots  q' ,  i = 1, 2 , . . . ,  m,  t ha t  equals 

0 at  0 and is a constant  for t > qm. Since the right side of (3.10) is concave it 

suffices to check (3.10) at  the points  t = q' ,  i = 1 , . . . ,  m. 

F rom (3.11) we infer tha t  

K(qi, y;-R) = Eqk/2  + qi /2  q(i-k)/2 < v'q+ 1qi/2. 
k=l k=i+l -- ~ - -  1 

On the other  hand,  

K(t,x;-X) = K(t,z;-~) >_ sup ~ inf [A 
i<k<m [O<_~<_q k/2 

= sup {qk/2min(1,q-kt)}. 
l < k < m  

+ t(1 - ~)q-~]} 

To prove the inequali ty in case n = 2m (the remaining case is left to the reader)  

define x, y E Rn by 
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The right side equals qi/2 at t --- qi as well. Therefore, 

v ~ - i  K(q i, x;-X) <_ q,/2 <_ ~ _ . _ ~ K ( q i ,  y; X)  

and (3.10) has been established. 

From the inequality (3.10) it follows that 

y - - T x  

for some linear operator T: X -~ X satisfying 

IITII~_. ~ < v/~ +_ 1 ~e(X). 
- v ~  1 

- -  .--732 

Now let P: X -~ 11 and I: l~  -* X be the canonical projection and injection 

respectively, i.e. 

P ( u  �9 v) = ~, I (u)  = u r o. 

Then their norms < 1 and besides, 

P(y) = z, I(z) = x, 

see (3.9). Hence the operator 

S := P T I  

- m  . ~ r r t  

maps from I~ into l 1 and 

,/4 + 11 3e(X). 

Besides, according to the definition of S 

(3.13) Sz = z. 

Now we will use a special case of the Stein-Weiss interpolation theorem. It 

can also be proved directly by the classical Thorin trick; see, e.g., [BK], Section 

1.7. In what follows we denote X | C := (X0 | C, X1 | C) by X(C). 
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LEMMA 3.3: Let T be a / /nea r  operator acting from ~ ( C )  into -[~ (C) with the 

norm A. Then the norm o f T  as an operator from/~,1/2(C) into/~,1/2(C) is less 

than or equal to A. 

We apply the lemma to c o m p l e x i f i c a t i o n  Sc of the operator S defined by 

Sc(x) := S(Rex)  + iS ( Imx) ,  x e C TM. 

According to Krivine's result [Kr] 

IIS 117=(c)_ 7 (c) -<  llSllT=_ z;*. 

From this and (3.12) and (3.13) it can be concluded that  

IJzll, l, _ ( )ID ii  l,. 

But z = (1, v @ ' " ,  (v~) m) and hence its norm equals m on the left and 1 on 

the right. So, the inequality can be rewritten as follows: 

~e ,~>~e(X)> v / q - 1  1 x / ~ - I  
m - -  - - - - n .  

_ _ v ~ + l  2v/2 v/q + 1 

This goes over to the stated lower estimate as q --+ co. | 

Remark  3.4: Is inequality (3.5) exact? I t  may be conjectured that  

~e(l~,l~(w)) = 1. 

It  is worth pointing out the reformulation of the conjecture. 

Let x, y E ] ~  satisfy 

YkWk XkWk (t > 0). 
l + t2w 2 <- l + t2w~ 

k = l  k = l  

Does there exist a linear operator T mapping (l'~, l~(w)) into itself with the 

norm 1 such that  y = Tx? 
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4. Duality 

In what follows let X -- (X0, XI) denote a fixed finite-dimensional Banach couple. 

If Xi -- (X, H" Ill) we define the dual Banach couple X* -- (X~, X[) by putting 

X* := (X, [[. [I*) where [I" I[* := max{(., y); [lYlli -< I} is the dual Banach norm. It 

is important to point out that this definition coincides with the general one, see 

[BK], Section 2.4, restricted to the case of finite-dimensional couples. Therefore, 

we can and shall make use of the general duality theorems contained in [BK]. 

THEOREM 4.1: There exists a constant c > 0 such that 

(4.1) c-l~e(X) < a~(X*) < cse(X) 

for any finite-dimensional Banach couple. 

Proof." Since X** = X in this case, it suffices to prove the right inequality. The 

proof is based on the following propositions. To formulate the first of them, we 

recall the definition of orbi t  Orby(Y) of an element y in a Banach couple Y, 

namely, the linear space 

Orby(Y) := {z e Yo+Y1; 3T:Y- - -*Y , z  = T y }  

equipped with the Banach norm 

(4.2) HZHOrbv(~) := inf{HT][v_V; z = Ty}. 

PROPOSITION 4.2: Let x* be an arbitrary non-zero element of X~ + X~ (= X).  

Then there exists an exact interpolation space A of X such that 

A* = Orb,.  (X*) 

isometrically. 

The result is an immediate consequence of Theorem 2.3.34 of [BK]. We remark 

only that in this situation A* coincides with (X, I[" Ilia). 

On the other hand, according to Theorem 2.3 we get for this A the following: 

PROPOSITION 4.3: There exist a Banach lattice r on (~_, dt/t) and absolute 

constants, i.e., constants independent of X ,  cl, c2 > 0 such that 

(4.3) IIxlIK,( ) <-- C18e( X) IIxlIA, 
IlxllA < C2llXlIK (-Z), 
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for all x E Xo + Xl. 

Now let the Banach lattice �9 be defined by 

(4.4) �9 := Kr 

where r is the Banach lattice of Proposition 4.3. Recall that the Banach couple 

0 1 e (0 < 0 < 1) is defined by the norm Lp is equal to (Lp, Lp) where the space Lp 
{fro+ It-e f(t)lP~} 1/'" 

Introduce the associate lattice 9 + of �9 by 

(4.5) HfH~+ : = s u p { ~ + f ( t ) g ( 1 )  dt } y ;  IIgll+ _~ 1 

PROPOSITION 4.4: There exist absolute constants c3, c4 > 0 such that 

Z* IIz*llK++(~') <c311 I/orb+.(x)' 
(4.6) 

llz*llorb+.(~+l- < cna+(X)llz*llK,,+(-Z+), 

for any z* = X~ + X~. 

Here the orbit is taken from Proposition 4.2. 

First of all we shall see how the proposition implies the theorem. 

Assume elements x*, y* E X~ + Xf satisfy 

K(t,y*,-X*) < K(t,x*;-X*) (t > 0). 

Then, by the definition of a K-space, we see that 

lly*ll~++ (~.) -< llx*lIK,,,+ (z). 

Combining this with the first inequality (4.6) for z* := x* and with the second 

one for z* :-- y* we deduce that 

lly*llo,+++(+-) < c,+m(X)IIY*IIK,++(-Z') < c3c4~eCX)llx*llOrb+.(-Z'). 

But the norm dn the right equals 1 and hence 

llY*llo,.b,.(~") < c3c43e(X)" 
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According to definition (4.2) there is a linear operator T: X* --* X* such that 

iiTli -_ . < c3c, (X) 

and y* = Tx*. 
Remembering Definition 1.1 of the Calder6n constant, we then can deduce that 

Be(X*) _~ c3x48e(X). 

Thus, it remains to prove Proposition 4.4. To accomplish this we remark first of 

all that 

(x) A Ks(X) 

(see Theorem 3.43 of [BK]). The notion X ~ Y means that the Banach space X 

imbeds into the Banach space Y with the imbedding constant less than or equal 

to % Passing to the dual spaces we get 

(4.7) K~(X)* L Jr 

But, from the basic duality theorem of the real method (see [BK], Theorem 

3.7.2), 

(4.8) Jv (X)* - Kr (X*) 

and the norms of these spaces are equivalent up to constant c > 0 independent 

of X. Now it follows from (4.8), (4.7) and the second inequality (4.3) that 

IIz*llK,+(~') -< cllz*llj,(-z). < cllz*llKr < cc2ilz*IIA* 

for every z* e X~ + X~'. 

Together with the isometry of Proposition 4.2, this gives the first of the 

inequalities (4.6). 

To prove the second inequality, we have to apply the imbedding 

(4.9) K$(X) ~ J~,(X), 

where ~ := K$(L1) (see Theorem 3.5.5 and Remark 3.5.7 in [BK]). Unfortu- 

nately, the imbedding was proved for the so-called non-degenera te  lattices 

only. This means the fulfilment of the condition: 

$ \ ( L ~  UL~)  # 0. 
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But this does not apply in our case because of the finiteness of the dimension of 

X. To avoid the obstruction, we introduce the modified Banach lattice Cx by 

r := r 

where r is a fixed non-degenerate Banach lattice and the number A > 0 will be 

chosen later on. Recall that the norm of this lattice is defined by 

(4.10) [J-f[lr := f=ifnofA {[[fo[[~ + AH.fl[I~}- 

It is clear r is non-degenerate and therefore 

(4.11) Kr ~ J~ (X), 

where 

(4.12) ~ := Kr (L~). 

According to the definition of r and Theorem 3.3.15 of [BK], the right side of 

(4.12) is equal to 

K~(s + ~K$(s = V + ~ ,  

where �9 := Ks(L1). In fact, this is an isometry because the constant of K-  

divisibility that is presented in the formulation of this theorem, is equal to 1 for 

the couple L1 (see [SS]). 

Now using (4.8), (4.11) and the first inequality (4.3) we conclude that 

IIz'114- < c~(-Z) llz*ll~,(~). --- c ~ ( X ) l l z * l l K , ~  (~). 

< lSc2m(X)[Iz* I[j~ (~)- -< 18c~m(X)[Iz* [[K,~ (~*)" 

Here we denote 

~ := ~ + A ~  

and take into account the imbedding 

r162 

According to definitions (4.5) and (4.10) 

~+--~+n~ 
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with equivalence of norms (the equivalence constant _< 2). Recall that the right 

space defined by the norm 

[[f[J,+n~r := max{Hf][,+, ~[]f][r 

Now, using the preceding inequality and the isometry of Proposition 4.2, we get 

1 
[[z*liOrb~. (~*) < 36c2 max{llz*llK,+(~), ~Hz*IIKr (~*)}. 

Denote by S the unit sphere of K,+ (X*). By the compactness of S 

M :-- sup [IZ*Hgr < oo. 
z * E S  

Putting A = 2M we deduce from the above inequality that 

NZ*HOrbx,(~*) _< 36c2~e(X)max 1, M = c4se(X) 

for every z* E S. 

By homogeneity of a norm, we thus conclude that 

IIz*llo~b~.(~') <-- c4~e(X)llz*llK~+(-z'). 

The proof of Proposition 4.4 is complete. | 

To illustrate the theorem, we introduce the discrete analog (Ip,v~) of the 

Sobolev couple (Lp, W1). Recall that the second space is defined by 

n--1 

(4.13) I1~11~;~ := {Ixll q + ~ IXk+l - xplq} 1/q. 
k = l  

The couple (/p, Vp) is denoted in Section 1 by W---~'p as well. 

The dual norm to norm (4.13) is equal to 

= (x e •) IIxll(~;~l- ~ k = l  [s=l 

where 1/q + 1/q ~ = 1. 
s X Passing on to the new coordinates ys := ~k=l  k, we see that 

Ilxll(~)- = Ilyll~,, Ilxll(~)- = Ilylt.~,. 

Now, using Theorem 4.1, we deduce: 
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COROLLARY 4.5: Uniformly in n, p, q 

v; 

In particular, within the notation of Section 1, 

(4.14) te(/~(/~,),  Lip(An)) ~ te(W=-~). 

Isr. J. Math.  

5. Asymptot ic  for 8e(A(An)) 

Let M be a subset of N+ and A(M) denote the Lipschit z couple (A0 (M), A 1 (M)). 

Recall that  A0(M) is defined by the norm 

where 

IIfllAo(M) := sup c0(t; f___~) (0 < 0 < 1), 
t>o t o 

f )  := 

is the modulus of continuity of f .  

factorization by constants. 

Now let 

T H E O R E M  5 .1 :  

sup If(a) - f(b)l 
la-bl<t 
a ,b~M 

We consider this as a Banach couple using 

1 2 1} 
A n : =  0, n , n , . . . ,  " 

~e(A(An)) ..~ log(n + 1). 

Proof'. The upper estimate follows immediately from Theorem 6.1 (see also 

Proposition 6.3 for a slightly more exact result). 

To prove the lower estimate we introduce the functions f and gm by 
rn 

(5.1) f ( t ) : = t  1/2 and 9 m ( t ) : = c E 2 - i / 2 u i ( t  ) (t>O) 
i=1 

where m := [log 2 n] - 1 and c := (x/~ - 1)2 -5/2. 

The sequence {ui} is defined by 

(5.2) ui(t) := u(2i-lt) (i E N) 

where u: P~ ~ R is the broken line of period 1 such that 

(5.3) u(t) := 14t + 11 if - ~ < t _< �88 
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PROPOSITION 5.2: 

(a) gm E A1/2(]~- ) and, moreover, 

(5.4) ~(t;gm) < min{2m/2t, t 1/2, 1}. 

(b) For every linear operator T: A(R+ ) ~ A(R+ ) satisfying 

T f  = gm 

the inequality 

[ITIIx(R+)-~X(R+) --- clm 

holds with an absolute constant cl > 0. 

We first deduce the theorem from this proposition and then prove it. 

Let Rn: S(P~_) ~ A(An) be the restriction operator and E~: X(An) ~ X(~_) 

the extension operator defined as follows: 

(i) Eng is the linear function on [L~A, ~] that interpolates g at the ends 

(j -- 1 . . . .  , n); 

(ii) (E~g)( t ) := (E~g)(1) (t >__ 1). 

Obviously En is a contraction, i.e., its norm < 1. 

Without loss of generality, we suppose hereafter that n = 2 m+l. Put x := R n f  

and y := R,~g,,~. Note that by the choice of n, 

Eny = gin. 

Therefore, if a linear operator S: A(An) ~ A(/k~) takes x to y, then 

( E n S R n ) f  = gin. 

Besides, according to assertion (b) of Proposition 5.2, 

Cl?n ~ IIEnSRnllx(~+)_~X(~§ ~ IISllx(~). 

If we now establish that 

(5.5) y _< x mod(A(An)) 

then, by Definition 1.1 of the Calder6n constant, we deduce that  

~e(~(An)) > clm > c2 log(n + 1) 
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with some absolute constant c2 > 0. 

To prove (5.5) we make use of the identity 

(5.6) K(t,g:A(M)) = &(t;g) (t _> 0) 

where & stands for the least concave majorant of w (see [BK], Proposition 3.1.19). 

We mention that this proposition deals with the couple (I~(M),  Lip(M)) but a 

simple change of the proof gives (5.6). So, according to (5.6) and (5.4), 

g(t ,  y: A( An) ) = &(t, Rngm) <_ &(t, gm) <-- min(t U2, 1) = rain(f (t), 1). 

But &(t, Rngm) is a continuous concave broken line with knots j /n,  j = 1,. . . ,  n, 
equal to a constant, if t > 1. Therefore, the above inequality yields 

K(t,y: A(An)) _< (EnRd)( t )  (t >_ 0). 

But the right side is equal to w(t, E,~R,~f) and 

w(t, E~Rnf) <_ w(t, Rnf) < K(t, RJ;-A(An)). 

Remembering that x := Rnf we see that this completes the proof of (5.5) and of 

the theorem. 

Proof of Proposition 5.2: Since 

[[Ui[[Ae(R+) = 2 . 2  ~ (6 = 0, 1) 

by the definition of u~, 

w(t, ui) _<: ~=ion, l { te[[ui[[Ao(R+ ) = 2 e=o,lmin (2it) ~ 

Hence, 

w(t, gm) <- c E 2-ff2w(t' ui) ~_ 2c t 2 if2 + 2 -if2 

< 2c { 2t/2t 2-(t+1)/2 

- _ l - 1 / v ~  + 1 - 1 / v ~ J  

for every 1. Choose I satisfying 2 -l-1 < t _< 2 -t .  We then see from the above 

inequality that  
4x/~ , -  

<_ vq 

by the choice of c. Taking l = 0 or 1 = m we complete the proof of part (a). 

The proof of part (b) is based on two lemmas. The former is readily seen by 

direct calculation. 
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LEMMA 5.3: f l  ui(t)uj(t)dt = 5ij/3, where 5ij is the Kronecker symbol. 

To formulate the next result we introduce the sequence of functions {~i}iez 

by 
21-1t- 1 if 2 i-1 < t < 2 i 

~i(t) := 2_i/~x/~_ x/~(2_it _ 1) if 2 i < t _< 2 i+1 

and ~i(t) := 0 for other t E R. 

Now let T: A(R+) ~ A(P~_) be a bounded linear operator and let 

r  (i �9 Z). 

Then the following statement is valid. 

LEMMA 5.4: 

(a) For f(t) :-- t 1/2 (t > O) 

T f  = E 2i/2r (convergence in A 0 ( ~ )  + AI(~+)).  
iEZ 

(b) For every t >_ O, 

E I~(t)l  -< 4HTIIAo(~+)" 
iEZ 

(c) Eiez2il~p~(t)l _< IITIIA,(R+) a.e. on ~_ .  

Remark 5.5: In this formulation we regard elements of Ai(R+) as functions 

which are equal to 0 at 0 ( / =  0, 1). 

Proo~ It is easy to verify that 

0_<~ i_< l ,  H~O~HA~(R+)=21-i ( i E Z )  

and that 

f = ~ 2i/2~i 
iEZ 

where the series on the right converges in sum Ao(~-)  + AI(K+). Since T is by 

definition a bounded linear operator in this sum, part (a) is established. 

We remark now that supports of functions ~i and ~j are mutually disjoint if 

I i - Jl > 1. Therefore, for every sequence (ai)iez with a finite support, 

_< 2.21-e sup I[c~i~i [Ins (R+) --~ 4 sup 2 -i~ [ai[ EOli~Oi Ae (R+) IEZ iEZ 
iEZ 
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where 9 --= 0, 1. 

According to Remark 5.5, r :-- Tpi equals 0 at 0. Therefore, 

I Ea i r  <- E a ~  Ao(~+) -< 411TI[A~ (t_>0). 
i i i 

Now fix t E ]Ir and choose ai := signy)~(t) if ]i I < N and a~ := 0 otherwise. 

Letting N ~ oo we get assertion (b) from the above inequality. 

Similarly, since 

IlfllAl(~+) ' : ]If IIL~(R+) 

we may conclude that 

~r ~ -' _~ a i r  AI(•+)--<411TllAI(R+)suP2 ](~il, 
i " z 

for almost all t > 0. 

Choosing in the inequality ai := 2 i signr if lil < N and a~ :--- 0 otherwise 

and letting N ~ oo, we get assertion (c). 

We now return to the proof of part (b) of Proposition 5.2. We attain this by 

estimating in two different ways the integral 

(5.7) J0 gt := gm(t) 2J/2u3(t ) dt. 

Using Lemma 5.3 we readily see that 

-~- l c m .  

Now we shall prove that 

(5.s) n < cllITllx(~§ 

where cl is an absolute constant. Comparing this with the preceding equality we 

obtain the desired estimate of IITIIx(~+). 
So it remains to establish (5.8). To this end we insei't the expression of gm, 

i.e., 

gm = E 2 i / 2 r  (= T f), 
iEZ 
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into integral (5.7) and divide the resulting sum into two parts: 

/o 1 f~ = 2 k/2 Ck_j(t)uj(t)dt =: f~o + f~l, 
kEZ j---=l 

where rio := ~k<o and ~1 := }-~k>l" 

Applying inequality (b) of Lemma 5.4 and bearing in mind that [ukl < 1, we 

see that 

~0 <-- k~<02k/2~01 ( ~ l ~ k - j ( t ) l )  l<j<mmaX l~Ljldi~ 
.,4=1 

4 4 < -~U--~IITIIAo<R+)<_ ~--2~lIrlix<~+/. 

Now put 

v~(t) : =  u,(s)ds. 

According to the definition of u~ (see (5.2) and (5.3)), 

0 < v~ <_ 2 -i-1 and v(0) = v(1) = 0. 

We may now integrate by parts and apply inequality (c) of Lemma 5.4 to 

conclude that 

f~l = ~ 2 k/2 Ck-j(t)vj' (t)dt 
k>O j= l  

fo l m 
< E 2-k/2 ( E  2k-j Ck-J (t)l) max (2Jvj(t)dt) 
-- l < j < m 

k>o j=l 

2r 2v~ _< ~-2-illTtr <- ~-~lITllx(~+). 

This implies (5.6) and completes the proof of Proposition 5.2. 

6. E x t r e m e  p rope r ty  of A(&n) 

In this section it will be shown that the couple A( /~)  has asymptotically the 

largest Calder6n constant among the couples A(M) defined on n-point subsets 

M of R. More precisely, we prove 
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THEOREM 6.1: For every n-point subset M of R 

~e(A(M)) _< 41ogn. 

Proof'. We prove by induction on n := # M  the following more general 

STATEMENT: Let X = (X0, X1) be an arbitrary Banach couple and let x E 

Xo + X1 and y: M ~ R satisfy 

K(t,y;A(-M)) <_ K(t,x;-X) (t > 0). 

Then there exists a linear operator T: X --* A(M) taking x to y and satisfying 

[[TII~-.._,X(M) < 4 log(#M) .  

i 

The result is correct for # M  = 2.. Indeed, d imA(M)  = 1 in this case and we 

can consider A(M) as (R, R). Then the K-functional of y is equal to lYl rain(l, t) 

and therefore lY[ < K(1,  x; X).  Applying the Hahn-Banach theorem, we may 

find a linear functional ] :  X0 + X1 --~ R such that  

If(z)] <K(1 , z ;X)  

for all z with the equality for z -- x. If we then put 

f(z) T(z) = 

we have obtained the desired operator T. 

Suppose now that  the statement is true for every M C 1r with # M  = n - 1 

and we prove it for M -- { a l , . . . ,  as} (n > 3). Here we assume that  

al < a2 < ' " < a n .  

To accomplish this we first reduce the proof to case X = Loo. To this end one 

remarks that  x ~ K(. ,  x; X) is a sublinear map from Banach space X0 + X1 into 

Banach lattice L ~ + L ~ .  According to the Hahn-Banach-Kantorovich theorem, 

there exists a linear operator U: X0 + X1 ~ L ~ + L 1 such that  

Iuzl _< K(., z; X)  
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for all z E X0 + X1 with the equality for z = x. Moreover, 

IrUzllL~ := sup t - i l (Uz ) ( t ) ]  <- sup 
t ) o  t )o 

K( t ,  x; X )  
_< Ilzll  (i = o, 1). 

In other words, U maps X into L~r and its norm _< 1. 

Therefore, in order to complete the proof, it suffices to find a linear operator 

S: L ~  --~ A(M) such that  

S f  = y 

and, besides, 

(6.1) IISIIzoo-.X(M) -< 4 logn 

and then put T := SU.  In this situation, f := K(.,  x; X) but we shall prove the 

assertion for any f E L ~ + L 1 satisfying 

m 

(6.2) K ( t , y , A ( M ) )  <_ f ( t )  (t e R+). 

For determining S we associate with each point a~ E M the restriction operator 

Ri: -A(M) --* -A(M \ {a i} )  and the extension operator E~: A(M \{a i} )  --* A(M) 

given by 

(Eig)(ai)  := (1 - cq)g(ai-1)  + aig(ai+l) 

where 
a i  - a i -  1 ai . -  (1 < i < n), 

a i + l  - -  a i - 1  

Here we put g(ao) = g(an+l) := 0. 

It is readily seen that  

Ol I - - - - -  1; an = O. 

(6.3) IIE~IIx(M.qad)-:X(M) = 1 (1 < i < n). 

We also define the linear operator Ai: Loo --~ A(M) by 

( A ig ) (a j )  ---- [(1 - ai)g(ai  - ai-1)  T (~i~o(ai+l - ai)](~ij, 

where 1 _< j _< n (provided g(al  - ao) = g(an+l - an) := 0). 

It is easy to see that  

IIAitlL~-...~AI(M) ~ 2 max{al,  1 - ai}. 
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Since 0 _< ai _< 1 and IlZXiIILO--A0<M) _< 1, we conclude that 

(6.4) IIAgII~X(M) < 2 (1 < i < n). 

Identity (5.6) and inequality (6.3) imply 

[y(ai) - (E iRiy ) (a i ) [  <_ (1 - o~i)[y(ai) - y(ai-1)[ + c~i[y(ai) - y(ai+l)[ 

_< (1 - ct i ) f (a i  - a i - t )  + o~if(ai+l -- ai). 

Hence we deduce that 

(6.5) y = E i R i y  + e i A i f  

for some ei e [-1,1] (1 < i < n). 

Since 

K ( t , f ; s  = ] ( t )  > f ( t ) ,  

where ] is the least concave majorant of f ,  inequality (6.2) yields 

K(t,R~y;X(M\{ad)) <_ K(t,f;Zo~) (t e ~_). 

According to the assumption of induction, there exists a linear operator Ti: Lo~ 

A(M \{a i} )  such that 

T i f  = R i y  (6.6) 

and, in addition, 

(6.7.) I[Ti[lToo-,X(M..{a,}) <- 41og(n -  1). 

We now define the required operator S by 

n 

s : :  1 E(E r  + c A,) 
i : 1  

From (6.5) and (6.6) it follows that 

S f  = y. 

To estimate the norm of S one notes that support supp(Aiqo) (~ C L~ + L ~ )  

consists of one point at the most (1 < i < n). Hence, in view of (6.4) 

n 

[] E EiAi T~.---~X(M) ~ 2 l<i<nmaX IIA~ll~__.X(M) -- 4 
i=l 
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and the inequality being combined with (6.3) and (6.7) gives 

4 [ISII'~(M) ~ 41og(n - 1) + - < 41ogn, 
n 

i.e., inequality (6.1) is proved. | 

To demonstrate another asymptotic behavior of ~e(A(M)) we consider the 

dyadic tree Tn (where n is the number of vertices) with the metric d induced 

by the tree-structure of 7',. So d(x, y) equals the number of edges of the shortest 

way in Tn connecting x and y. 

THEOREM 6.2: ~e(l~(Tn),Lip(Tn)) ~ loglogn. 

Proof: Let b = {v l , . . . ,vm)  C Tn be a branch of the maximal length. Let R 

be the restriction operator to b, i.e., R f  := fib, and E be the extension operator 

defined as follows. If f :  b --* ~ and bi is the branch emanating from vi C b, then 

we put 

(Ef)(v) :-- f(vi) 

for every v E b~ (1 < i < m - 1). It is readily seen that R: (l~(Tn),Lip(Tn)) "--+ 
(l~(b),Lip(b)) and E acts in the inverse direction. Besides, norms of these 

operators < 1. By Lemma 3.2 we therefore conclude that 

a~(/~(b), Lip(b)) _< ae(l~(Tn), Lip(Tn)). 

But b is isometrically isomorphic to the subspace {1 . . . .  , n} of R. Therefore the 

left side of the inequality is equal to a~(A(Am)). Now, applying Theorem 5.1, we 

obtain the desired lower estimate 

cl logm _< ae(l~(Tn),Lip(Tn)) 

where cl > 0 is an absolute constant (and n = 2m). 

To accomplish the upper bound we need the following useful proposition, in 

which (S, d) is a finite-point metric space and 

6(S) := mind(x,y), d(S) := maxd(x,y). 
~ y  z,y 
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PROPOSITION 6.3: x(lor Lip(S)) < 3 log 2 (2d(S) - \ ~ (s )  ]" 

Proof" It is clear that 

5(S)l l f l lu~(s) < I l l l l t~(s) ___ d(S)IIII[L~.(s) 

for any f :  M --~ R. The norm of loo(S) is, of course, equal here to 

sup~,y~s V(x) - f(x)l.  
Therefore, the statement follows from the next more general result. 

Let X be a Banach couple such that 

(6.8) ~llxllxo < Ilxllx, < Zll~llxo (x e Xo + x~) 

where 5, fl > 0 are constants. 

LEMMA 6.4: ~e(X) _~ 3log 2 (-~).  

For the sake of completeness, we outline the (standard) proof of the result. 

Using (6.8) and the definition of K-functional, we conclude that 

(6.9) K(Z,z;-X) = {tllzllX,llzllxo ifift-<at > fl (z E Xo + X1). 

Now let x and y satisfy 

(6.10) K(], y;-X) <_ K(t, x; X). 

Denote the left side by g(t)  and suppose that y -- #~0) + y~l) is an optimal 

decomposition for K(2ia) ,  i.e., 

K(2'5) -- tlV~~ + 2'~ltv~i)tlxl. 

Here i E {0, 1 , . . . , / }  and / E N is defined by 

2 ' -15 </3 _< 2la. 

Then, from (6.9), it follows that 

.(0,  ( . ( 1 )  $1,) 
Putting Yi := #~o) _ Yi-1 = Yi-1 - Y we get 

l 
y =  ~-'~ y~ 

i=1 
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and 

(~) 3(2ic~)-*K(2i~, y; X) (s 0, 1). 

Bearing in mind (6.10) we now find a linear functional fi: Xo + X1 ~ R such 

that 

fi(x) = 1 

and, besides, 

/~(2~' ~; x )  (z �9 Xo + x~). Ik(z)l 5 / ( (2*~ ,x;~)  

If we now define T: Xo + X1 --' Xo + X1 by 

/ 

T z  := ~-~ k(z)yi, 
i = 1  

then 

and moreover, 

l l 

i = 1  i = 1  

l 

IlTzllx8 ~ 3E(2ia)-~K(2ia, z;X) (s = 0,1), 
i = l  

by the choice of fi and (6.10). But each term on the right <_ [[z[[x8 and hence 

ze(X) <_ [lT[l-~_~ < 3l < 31og2 ( 2~ ) . , 

Returning to the proof of Theorem 6.2, we remark that 

5(T~) = 1 and d(T~) = 2m - 2 < 2 log 2 n. 

It remains to apply Proposition 6.2. | 

Remark 6.5: Now let T be a finite tree and let the distance of adjusted vertices 

x, y E T equal w(x, y) > 0. The distance d(x, y) of two arbitrary vertices x, y is 

measured by 

d(x, y) = inf E w(xi, xi+l) 
{*d 
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where the infimum is taken over all ways in T connecting x and y. In fact, we 

have proved that 

ae(loo(T), Lip(T)) ~ log d(T), 

in case w = 1. 

Of course this result is incorrect in general, but using a modification of the 

proof of Theorem 6.1, one can state that 

ae(loo (T), Lip(T, d)) < c log(#T)  

with constant c independent of T and d. 

7. A p p l i c a t i o n s  

As we have mentioned, X(~_) is not a C-couple (see [B] and [Cw]). Below we 

shall prove essentially a more exact result. For its formulation we have to use 

Definition 7.1 [Cw]: -X is said to be a Cp-couple (1 _< p _< oo) if for every 

x, y C X0 + X1 satisfying 

MAx'Y) := + [K~,x--;~J T j < oo 

there exists a linear operator T: X0 + X l  --~ X0 Jr- X l  such that 

and besides, 

y = Tx, 

I I T I I ~  _< cMp(x, y) 

where c is an absolute constant. 

It is clear that the notion of a C~-couple and a C-couple coincide. On the 

other hand, every Banach couple is a Cl-COuple (see [Cw]). It is also proved in 

this paper that the couple Ap(N+) := (Lp(N+),Lipp(N+)) is a Cp-couple with 

q := 2p/Ip - 21 if 1 < p < oo. Here Lipp (N+) is defned by the norm 

IlfllLip,(R+) := sup ~P(f' t--m--J) 
t>O t ' 

where 

sup 'jp 
O<h<t [,JR+ 
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is modulus of continuity of f in Lp. 

We remark that q --~ 2 as p ~ oo. In contrast to this the following statement 

is valid. 

THEOREM 7.2: A(lt~_) := A ~ ( ~ - )  is not a Cp-couple for any p > 1. 

Proof." Suppose that A(]l{+) is a Cp-couple for a fixed p > 1. Then for functions 

gin(t) and f( t)  = t U2 of Proposition 5.2 there exists a linear operator T: A(~+ ) --+ 

A(R+) such that 

(7.1) T f  = gin, 

and, besides, 

(7.2) liT]Ix(a+) < cMp(f, gm), 

where the constant c is absolute. 

But by (5.6) and the choice of f we see that 

K(t ,  f ;  X ( ~ ) )  = . ~  (I;  t) = t 1/~. 

In addition, by (5.6) and (5.4), 

/<(t, gin; A(N+ )) < min{2"~/2t, t 1/~, 1}. 

Hence, the right side of (7.2) is majorized by 

c{ j[R+min{2mp/2 t - l+P/2 , t - l , t - l -P/2}dt} l /P<_clm I/p. 

Therefore, 

llTlqx(a+) < cl - r  (p > 1) 

contrary to (7.1) and assertion (b) of Proposition 5.2. | 

A generalization of Proposition 5.2 can be used to prove a similar statement 

for the couple A1 (~ - )  = (LI(]I~-), Lipl(~+)).  To avoid further technical details 

we confine ourselves to the following weaker result. 

THEOREM 73 :  AI(N+) is not a C-couple. 

Proof' Let B ,  C LI(N+) be the subspace of continuous piecewise affine 

hmctions with nodes at 0, 1 . . . .  , n, equal to 0 if t >__ n. 
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LEMMA 7.4: There exists a linear projector 7r~: L I ( ~ )  ~ B,~ (n E N) such that 

sup II , ltx  < oc. 

Proof We choose a fixed continuous function ~ on [0,1] which possesses the 

following property: 

]o' /01 (7.3) ~(x)dx = 1, xp(x)dx = O. 

The desired operator 7rn is defined by 

(a) 7r~f E B~ ( f  E LI(R+));  

(b) 7r,~(f; i ) : =  f j + ' ~ ( x - i ) f ( x ) d x ,  i E { 0 , 1 , . . . , n -  1}. 

If f E B,~, then f ( x )  = Aix + Ci, i < x < i +  1, and 

i + 1  

7rn(f; i) = ~(x - i )(Aix + Ci)dx = f ( i )  (0 < i < n - 1) 
J i  

by (7.3). Besides, 7r,~(f; n) = 0 = f (n)  by the definition of Bn, and therefore, 

7rnf ---- f ( f  E Bn). 

We are now going to estimate the norm of 7r~. First, by definition of 7rn and the 

trapezoid rule, 

n--1 n 

+ i = 0  

which gives 

The Lipl-norm of ~rnf does not exceed 

]~(x)] ] f ( x + i + l ) - f ( x + i ) [  dx<maxlqoI .Var~+f .  
[~+ \ i = 0  

But the variation equals ]]f]lLipl(a+) by the Hardy-Littlewood theorem. 

Therefore, 
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Let us return to the proof of the theorem. Introduce the finite-dimensional 

couple X by 

x 0  := (B~,  [1" ILL1), X 1 : =  (B~,  I1" IlLipl). 

According to Lemma 7.4, X is a retract of A1 and therefore Lemma 3.2 yields 

~e(X) < (max [~l)%e(Al(~+ )). 

Hence, by duality (see Theorem 4.1), we obtain 

(7.4) ct~e(X*) _< ~e(Xl(R+)), 

the constant cl > 0 being independent of n. Simple calculation of the dual norms 

shows that 
Ilfllxv = sup If(x)l 

0 < x < n  

x (f  E B~). s 
IIfllx; = sup I f ( t )dt  

x>o do 

The differentiation f ~ f l  maps this couple isometrically to the couple Y -- 

(~�89 Y1) defined by 

IlfllYo = sup I f ( i ) -  f(i+ 1)1 = II(f(i))IIA1, 
0<i<n--1 

IlfllY1 -- sup If(x)- f (0 ) l  = sup If( i )  - f (0 ) l  ~ II(f(i))llAo" 
0<x<n l<i<n 

Therefore, Theorem 5.1 implies 

Cl logn < ~e(Y) = ae(X*). 

Together with (7.4) this leads to the inequality 

ct logn < ee(Xl(~+)) 

where n is arbitrary, Cl being independent of n. Letting n ~ c~, we complete 

the proof. | 
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